the least-square bisymmetric solution to a quaternion matrix equation with applications

Authors

q. wang

g. yu

abstract

in this paper, we derive the necessary and sufficient conditions for the quaternion matrix equation xa=b to have the least-square bisymmetric solution and give the expression of such solution when the solvability conditions are met. futhermore, we consider the maximal and minimal inertias of the least-square bisymmetric solution to this equation. as applications, we derive sufficient and necessary conditions for xa=b to have the positive (nonnegative) definite least-square bisymmetric solution and the maximal (minimal) least-square bisymmetric solution.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

The least-square bisymmetric solution to a quaternion matrix equation with applications

In this paper, we derive the necessary and sufficient conditions for the quaternion matrix equation XA=B to have the least-square bisymmetric solution and give the expression of such solution when the solvability conditions are met. Futhermore, we consider the maximal and minimal inertias of the least-square bisymmetric solution to this equation. As applications, we derive sufficient and necess...

full text

Ranks of the common solution to some quaternion matrix equations with applications

We derive the formulas of the maximal andminimal ranks of four real matrices $X_{1},X_{2},X_{3}$ and $X_{4}$in common solution $X=X_{1}+X_{2}i+X_{3}j+X_{4}k$ to quaternionmatrix equations $A_{1}X=C_{1},XB_{2}=C_{2},A_{3}XB_{3}=C_{3}$. Asapplications, we establish necessary and sufficient conditions forthe existence of the common real and complex solutions to the matrixequations. We give the exp...

full text

ranks of the common solution to some quaternion matrix equations with applications

we derive the formulas of the maximal andminimal ranks of four real matrices $x_{1},x_{2},x_{3}$ and $x_{4}$in common solution $x=x_{1}+x_{2}i+x_{3}j+x_{4}k$ to quaternionmatrix equations $a_{1}x=c_{1},xb_{2}=c_{2},a_{3}xb_{3}=c_{3}$. asapplications, we establish necessary and sufficient conditions forthe existence of the common real and complex solutions to the matrixequations. we give the exp...

full text

ranks of the common solution to some quaternion matrix equations with applications

we derive the formulas of the maximal andminimal ranks of four real matrices $x_{1},x_{2},x_{3}$ and $x_{4}$in common solution $x=x_{1}+x_{2}i+x_{3}j+x_{4}k$ to quaternionmatrix equations $a_{1}x=c_{1},xb_{2}=c_{2},a_{3}xb_{3}=c_{3}$. asapplications, we establish necessary and sufficient conditions forthe existence of the common real and complex solutions to the matrixequations. we give the exp...

full text

Two iterative algorithms to compute the bisymmetric solution of the matrix equation

In this paper, two matrix iterative methods are presented to solve the matrix equation A1X1B1 + A2X2B2 + ... + AlXlBl = C the minimum residual problem ‖ ∑l i=1 AiX̂iBi− C‖F = minXi∈BRni×ni‖ ∑l i=1 AiXiBi−C‖F and the matrix nearness problem [X̂1, X̂2, ..., X̂l] = min[X1,X2,...,Xl]∈SE ‖[X1, X2, ..., Xl] − [X̃1, X̃2, ..., X̃l]‖F , where BRni×ni is the set of bisymmetric matrices, and SE is the solution s...

full text

Iterative algorithm for the generalized ‎$‎(P‎,‎Q)‎$‎-reflexive solution of a‎ ‎quaternion matrix equation with ‎$‎j‎$‎-conjugate of the unknowns

In the present paper‎, ‎we propose an iterative algorithm for‎ ‎solving the generalized $(P,Q)$-reflexive solution of the quaternion matrix‎ ‎equation $overset{u}{underset{l=1}{sum}}A_{l}XB_{l}+overset{v} ‎{underset{s=1}{sum}}C_{s}widetilde{X}D_{s}=F$‎. ‎By this iterative algorithm‎, ‎the solvability of the problem can be determined automatically‎. ‎When the‎ ‎matrix equation is consistent over...

full text

My Resources

Save resource for easier access later


Journal title:
bulletin of the iranian mathematical society

Publisher: iranian mathematical society (ims)

ISSN 1017-060X

volume 39

issue 2 2013

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023